
4
Models for the contract analysis

The assessment of the contract proposed is carried out only over the

contracts that are optimal for the Buyer-Supplier dyad and, also, viable for

both companies. Those contracts are defined by their triples of parameter

values that maximize the dyad’s expected profit and make companies better

off in terms of the expected profit. Since that the dyad’s expected profit

is assumed to be just the sum of Buyer’s and Supplier’s expected profits,

the procedure to determine optimal and viable contracts involves solving the

medium-term optimal capacity problem for each company under the contract

conditions. To determine the viability for a given contract in each company,

the individual optimal expected profits under the independent planning (i.e.

without contract) are required. As already mentioned, the maximum expected

profit of each company under independent planning will also provide means

for assessing the gain that a given contract can bring to each company, i.e.

how the contract splits the total gain between them. Also, to determine the

gain in the companies’ joint performance derived from the contract, the dyad’s

maximum expected profit under central planning has to be obtained. In the

centralized planning system’s capacity problem, the companies act as a single

producer with two serval units coordinated by the central planning entity who

decides on both capacities.

In the sequel, the formulation and solution for the companies’ capacity

problems are presented in Section 4.1 under the contract situation and the two

benchmarks considered, namely: independent planning and central planning.

The formulation of these problems is based in the modeling assumptions

exposed in Section 3.5.1. The derivations and proofs are in Appendix C. Section

4.2 makes a general appraisal of the generic contract proposed in terms of the

relation between the companies’ optimal capacities, under and without the

contract. And, Section 4.3 presents the maximization problem to be solved to

find optimal contracts, which is here called contract problem, and the contract

optimization procedure that will be applied.
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4.1
The companies’ capacity problems

A company decides on its medium-term production capacity taking

into account the effect that this decision would have on its expected profit.

Assuming that the medium-term capacity cost-function is perfectly known, the

expected profit of the decision can be considered as the expected operational

(short-term) profit minus the capacity cost. In the short-term, the production

capacity is fixed and the operational profit for each company is given in terms

of revenue from the sale of its product and the operational expenses, which

include costs of inputs and variable production costs. The fixed costs can

only modify the value of the profit by a constant and, then, they will not

be considered. However, at the instant of making the medium-term capacity

decision, each company knows only probabilistically the market demand for

its product. So, assuming an expected profit maximizing behavior for the

companies’ management, the capacity problem is defined, here, as a bounded

maximization problem.

For the manufacturing setting described in the previous chapter, the

companies’ products and inputs are traded in the market at prices denoted

by pp, pm and prm, respectively, for the product, material and raw material.

Denoting the variable production cost to produce the product and the material,

respectively, by vp and vm, the Buyer’s production margin (πB), when he buys

the material in the spot market, is given by πB = pp−pm−vp, while Supplier’s

production margin (πS), when she sells the material in the market, is given by

πS = pm−prm−vm. It is assumed the markets are “viable” for both companies,

that is, πB and πS are considered to be positive. It is, also, assumed that

Buyer and Supplier known their own probabilistic market demands, which are

considered to be continuous random variables. Let X and Z represent market

demands, with their respective probability density functions, f(·) and h(·),
and cumulative distribution functions, F (·) and H(·) that satisfy F (0) = 0

and H(0) = 0.

For each company, the medium-term production capacity cost is con-

sidered to be quadratic in order to reflect that some resources necessary for

expanding the “soft” capacity (i.e. without doing investment of capital in fixed

assets) as, for example, overtime and outsourcing labor force become more ex-

pensive than regular laboral force. The medium-term capacity cost-functions

are defined by ΨB(C) = aB · C2 and ΨS(C) = aS · C2, respectively, for Buyer

and Supplier.
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4.1.1
The companies deciding independently

Under independent planning, Buyer and Supplier make their medium-

term production-capacity decisions without considering any agreement, or

contract, between them, so the markets are their sole trading opportunities.

Thus, given the medium-term production-capacity, the expected operational

profit for each company corresponds simply to the production margin (of selling

to the market) times the quantity expected to be sold. Buyer’s and Supplier’s

capacity problems are similar and defined, respectively, by Problem (1) and

Problem (2) presented in Proposition 1. Also, each one of these problems has

a unique optimal solution that satisfies the Equation (4-3) for the Buyer’s case

and Equation (4-4) for the Supplier’s one, as presented in Proposition 2.

Proposition 1 Buyer’s and Supplier’s capacity problems are defined, respec-

tively, by Problem (4-1) and Problem (4-2), whose objective functions are

given, respectively, by the expected profits EPB and EPS.

max
0≤C

{
−ΨB(C) + EX

[
ΠB|ζ(C, x)

]}
= max

0≤C

{
−aB · C2 + πB

[
C −

∫ C

0

F (x)dx

]}

(4-1)

max
0≤C

{
−ΨS(C) + EY,Z

[
ΠS|ζ(C, z)

]}
= max

0≤C

{
−aS · C2 + πS

[
C −

∫ C

0

H(z)dz

]}

(4-2)

Proposition 2 Buyer’s and Supplier’s capacity problems have a unique optimal

solutions that are denoted, respectively, by CB and CS and satisfy, respectively,

Equation (4-3) and Equation (4-4).

−2aB · CB + πB

[
1− F (CB)

]
= 0 (4-3)

−2aS · CS + πS

[
1−H(CS)

]
= 0 (4-4)

Since Buyer’s capacity cost-function and expected operational

profit-function under independent planning are given by, respectively,

EX

[
ΠB|ζ(C, x)

]
= πB

[
C − ∫ C

0
F (x)dx

]
and −aB · C2, the marginal

cost and expected profit associated to them are defined, respectively, by
d

dC
(−aB · C2

B) = −2aB · CB and d
dC

(
EX

[
ΠB|ζ(C, x)

])
= πB

[
1 − F (CB)

]
.

Thus, the condition given by Equation (4-3) is simply the first-order opti-

mality condition for the variable in his capacity problem, i.e. his optimal

medium-term capacity decision correspond to the capacity-value which hap-

pens to equalize these marginal functions. Analogously for Supplier, the

condition given by Equation (4-4) is simply the first-order optimality con-
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dition for the variable in her capacity problem, i.e. the intersection of the

marginal capacity cost with the marginal expected operational profit.

According to Proposition 1, the Buyer-Supplier dyad’s performance

under independent planning (EPIP ) is given by Equation (4-5), where CB

and CS represent the optimal capacity decisions, respectively, for Buyer and

Supplier acting independently, that is, they satisfy the conditions given in

Proposition 2.

EPIP = −
(
aB · C2

B + aS · C2
S

)
+

+ πB

[
CB −

∫ CB

0

F (x)dx

]
+ πS

[
CS −

∫ CS

0

H(z)dz

] (4-5)

4.1.2
The companies making decisions under the contract conditions

Under the contract situation, Buyer has the same information to decide

the capacity decision under and without the contract, so Buyer’s capacity prob-

lems are similar in both cases. However, Buyer’s expected operational profit

differs from the one under independent planning in the payment derived from

the contract. Buyer’s expected material (i.e. input) cost depends on the sources

from which the material is bought, i.e. uniquely from the Supplier or from both

sources (market and Supplier). Hence, Buyer’s expected operational profit un-

der the contract ζ, EX

[
ΠB|ζ(C, x)

]
, results to be defined by a function whose

algebraic definition changes at the capacity commitment level, R, which is the

threshold to the amount to be bought from Supplier. However, that function

is continuous and concave, and consequently, Buyer’s capacity problem has

a unique optimal solution. These results are presented in Proposition 3 and

Proposition 4.
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Proposition 3 Buyer’s capacity problem under the contract ζ = (R, d, t) is

defined by Problem (4-6), whose objective function is continuous.

max
0≤C

{
EPB|ζ

}
= max

0≤C

{ −aB · C2 + EX

[
ΠB|ζ(C, x)

] }
(4-6)

where

EX

[
ΠB|ζ(C, x)

]
= πB

[
C −

∫ C

0

F (x)dx

]
+





I1(C) , C ≤ R

I2 , C > R

with I1(C) = (d · pm + t)
[
C − ∫ C

0
F (x)dx

]
− t · R, and I2 = (d · pm +

t)
[
R− ∫ R

0
F (x)dx

]
− t ·R.

Proposition 4 Buyer’s capacity problem under the contract ζ = (R, d, t) has

a unique optimal solution, here denoted by CB|ζ and is given (implicitly) by

Equation (4-7).

CB|ζ =





C∗
1 , if EPB|ζ(C∗

1) ≥ EPB|ζ(C∗
2)

C∗
2 , if EPB|ζ(C∗

1) < EPB|ζ(C∗
2)

(4-7)

where

C∗
1 = arg max

C∈[0,R]

{
EPB|ζ(C)

}
=





C1 , if C1 ∈ [0, R)

R , if C1 ∈ [R,∞)

C∗
2 = arg max

C∈[R,∞)

{
EPB|ζ(C)

}
=





C2 , if C2 ∈ (R,∞)

R , if C2 ∈ [0, R]

with EPB|ζ(C) = −aB · C2 + EX

[
ΠB|ζ(C, x)

]
, and C1 and C2 satisfying,

respectively, −2aB · C1 + (πB + d · pm + t)
[
1 − F (C1)

]
= 0 and −2aB · C2 +

πB

[
1− F (C2)

]
= 0.

Note that Buyer’s expected operational profit-function under the con-

tract situation differs of the one under independent planning in the term I1(C)

if C ≤ R, or I2 if C > R. The expressions for I1(C) and I2 given in Proposi-

tion 3 can be interpreted as Buyer paying the penalty for the entire reserved

capacity −t · R and receiving the discount, as well as recovering the penalty,

for the units that he orders, i.e. (d · pm + t)
[
C − ∫ C

0
F (x)dx

]
if C ≤ R, or

(d · pm + t)
[
R− ∫ R

0
F (x)dx

]
if C > R.

The objective function for Buyer’s capacity problem under the contract

ζ = (R, d, t) is continuous and defined by parts. So, Buyer’s global-optimal

capacity decision is taken among the local-optimal capacities, according to the

Equation (4-7). Those local-optimal capacities are denoted by C∗
1 and C∗

2 in
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Proposition 4, and they correspond to the capacity-values that satisfy the first-

order optimality condition (C1 and C2), or to the committed capacity level (R).

Since the marginal functions associated to the capacity cost-function and ex-

pected operational profit-function are defined, respectively, by d
dC

(−aB · C2) =

−2aB ·C and d
dC

(
EX

[
ΠB|ζ(C, x)

])
= (πB + d · pm + t)

[
1−F (C1)

]
if C ≤ R,

or d
dC

(
EX

[
ΠB|ζ(C, x)

])
= πB

[
1−F (C2)

]
if C > R, the capacity-values for C1

and C2 must satisfy, respectively, −2aB ·C1+(πB + d · pm + t)
[
1−F (C1)

]
= 0

and −2aB · C2 + πB

[
1− F (C2)

]
= 0.

Supplier’s expected revenue, under the contract situation, comprises the

ones from selling the material to Buyer and to the market. Let a continuous

random variable Y represent the material order from Buyer to Supplier,

and g(·) and G(·), respectively, her mixed probability-density function and

cumulative distribution function. Since Buyer’s production is bounded by his

medium-term production capacity, his material entire requirement is limited to

that capacity. Therefore, the mixed probability-density function g(·) has always

limited range, whose uppermost value (ymax) corresponds to given Buyer’s

medium-term capacity decision, that is, ymax = CB|ζ . That function is defined

by the expression in Definition (4-8).

g(y) =





f(y) , y < ymax = CB|ζ

1− F (ymax) , y = ymax = CB|ζ
(4-8)

Despite of depending on Buyer’s material order distribution, Supplier’s

expected operational profit (EY,Z

[
ΠS|ζ(C, y, z)

]
) has unique algebraic expres-

sion of definition along its domain, which depends on the relation between the

values of ymax and R, the capacity commitment level specified in the contract.

Also, due to the forced compliance assumption, Supplier’s capacity has lower

bound equal to R. The formulation for that problem is presented in Propo-

sition 5, while the unique optimal solution is given, in an implicit way, by

Proposition 6.
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Proposition 5 Given the contract ζ = (R, d, t), Supplier’s capacity problem is

defined by Problem (4-9), whose objective function is continuous.

max
R≤C

{
EPS|ζ

}
= max

R≤C

{ −aS · C2 + EY,Z

[
ΠS|ζ(C, y, z)

] }
(4-9)

where EY,Z

[
ΠS|ζ(C, y, z)

]
is given by Equation(4-10), with K = ymax if

ymax ≤ R, or K = R if ymax > R.

EY,Z

[
ΠS|ζ(C, y, z)

]
= πS

[
C −

∫ K

0

Dx(C)f(x)dx−DK(C) (1− F (K))

]
+ JK

(4-10)

with Dx(C) =
∫ C−x

0
H(z)dz, DK(C) =

∫ C−K

0
H(z)dz, Jymax = −(d · pm +

t) E[Y ] + t ·R, and JR = −(d · pm + t)
[
R− ∫ R

0
F (x)dx

]
+ t ·R.

Proposition 6 Supplier’s capacity problem under the contract ζ = (R, d, t) has

a unique optimal solution that is denoted by CS|ζ and given (implicitly) by

Equation (4-11).

CS|ζ =





C◦ , if C◦ ∈ (R,∞)

R , if C◦ ∈ [0, R]
(4-11)

where C◦ is the unique stationary point for the expression that defines

Supplier’s expected profit, which satisfies the next Equation (4-12) with

K = ymax if ymax ≤ R, or K = R if ymax > R.

−2aS · C◦ + πS

[
1−

∫ K

0

H(C◦ − x)f(x)dx−H(C◦ −K)
(
1− F (K)

)]
= 0

(4-12)

The Supplier’s expected operational profit-function under contract has,

in contrast with Buyer’s one, a definition along its domain, which is given by

Equation(4-10), with K = ymax if ymax ≤ R, or K = R if ymax > R. That

expression is more involved than the one under independent planning, because

the quantity expected to be sold depends on the market demand and on Buyer’s

material order, which are considered to be independent. The expressions for

Jymax and JR given in Proposition 5 can be interpreted as Supplier receiving the

penalty for the entire reserved capacity t ·R and giving the discount, as well as

reembursing the penalty, for the units ordered by Buyer, i.e. −(d ·pm + t) E[Y ]

if ymax ≤ R, or −(d · pm + t)
[
R− ∫ R

0
F (x)dx

]
if ymax > R. This makes clear

the equivalence of the contract proposed with the DR contract.

Again, Supplier’s optimal capacity decision given by Equation (4-11) cor-

responds to the capacity-value that satisfies the first-order optimality condition
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(C◦), or the committed capacity level (R) because the Supplier’s capacity has

a lower bound equal to that level. Since the marginal functions associated to

Supplier’s capacity cost-function and expected operational profit-function are

defined, respectively, by d
dC

(−aS · C2) = −2aS ·C and d
dC

EY,Z

[
ΠS|ζ(C, y, z)

]
=

πS

[
1− ∫ K

0
H(C◦ − x)f(x)dx−H(C◦ −K)

(
1− F (K)

)]
, the capacity-value

for C◦ must satisfy Equation (4-12), where K = ymax if ymax ≤ R, or K = R if

ymax > R. That last equation is simply the capacity value at the intersection

of the capacity cost-function with the expected operational profit-function.

Note that, in getting the assessment for the dyad’s expected profit on

the optimal capacity decisions, the terms involved in the expressions of the

companies’ expected profits that are associated to the monetary transference

generated by the contract ζ vanish. Since that CB|ζ = ymax, those terms

are I1(C) and J when CB|ζ = ymax ≤ R, while the ones are I2 and K

when CB|ζ = ymax > R. Thus, the companies’ joint expected profit or,

equivalently, the Buyer-Supplier dyad’s expected profit under the contract

conditions (EPD|ζ) is given by the Equation (4-13), in which CB|ζ and CS|ζ
represent to the optimal capacity decisions, respectively, for Buyer and Supplier

taking into account the conditions of the contract ζ.

EPD|ζ = −
(
aB · C2

B|ζ + aS · C2
S|ζ

)
+ πB

[
CB|ζ −

∫ CB|ζ

0

F (x)dx

]
+

+ πS

[
CS|ζ −

∫ K

0

Dx(CS|ζ)f(x)dx−DK(CS|ζ) (1− F (K))

]

(4-13)

where K = CB|ζ = ymax if CB|ζ = ymax ≤ R, or K = R if CB|ζ = ymax > R,

and Dymax(·) and DR(·) are as defined in Proposition 5.

4.1.3
The companies being coordinated by central planning

If the companies are coordinated by central planning, that is, they can

be considered as producing units of a single system. The medium-term produc-

tion capacities are decided simultaneously and obtained by the, here called,

centralized system’s capacity problem, whose objective function is in terms of

the Buyer’s and Supplier’s capacities, respectively, CB and CS. The central-

ized system’s expected profit (EPCP (CB, CS)) corresponds to the companies’

expected operational profit under central planning (EX,Z [ΠCP ] (CB, CS, x, z))

minus the sum of the capacity cost of each producing company unit, or Buyer

and Supplier. According to Proposition 7 and Proposition 8, the centralized
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system’s problem is defined by Problem (14), whose unique optimal solution

is given implicitly by Equation (4-16).

Proposition 7 The centralized system’s capacity problem is equivalent to

Problem (4-14), whose objective function correspond to EPCP (CB, CS) that is

a strictly concave and continuous function.

max
(0,0)≤(CB ,CS)

{−(aB · C2
B + aS · C2

S) + EX,Z [ΠCP (CB, CS, x, z)]
}

(4-14)

where

EX,Z [ΠCP (CB, CS, x, z) = πB

[
CB −

∫ CB

0
F (x)dx

]
+

+ πS





[
CS −

∫ CS

0
Dx(CS)f(x)dx

]
, CS ≤ CB[

CS −
∫ CB

0
Dx(CS)f(x)dx−

−
(
1− F (CB)

) ∫ CS−CB

0
H(z)dz

]
, CS > CB

(4-15)

with Dx(C) =
∫ C−x

0
H(z)dz, F (·) and H(·) are, respectively, the cumulative

distributions for the market demands for the product and material (X and

Z).

Proposition 8 The centralized system’s capacity problem admits a unique

optimal solution, which is denoted by (C∗
B, C∗

S) and is given (implicitly) by

Equation (4-16).

(C∗
B, C∗

S) =





(Ca∗
B , Ca∗

S ) , if Ca∗
S > Ca∗

B , Cb∗
S ≤ Cb∗

B

and EPCP (Ca∗
B , Ca∗

S ) ≥ EPCP (Cb∗
B , Cb∗

S ),

or if Ca∗
S > Ca∗

B , Cb∗
S > Cb∗

B

(Cb∗
B , Cb∗

S ) , if Ca∗
S > Ca∗

B , Cb∗
S ≤ Cb∗

B

and EPCP (Ca∗
B , Ca∗

S ) < EPCP (Cb∗
B , Cb∗

S ),

or if Ca∗
S ≤ Ca∗

B , Cb∗
S ≤ Cb∗

B

(C∗
B, C∗

B) , if Ca∗
S ≤ Ca∗

B and Cb∗
S > Cb∗

B

(4-16)

where (Ca∗
B , Ca∗

S ) and (Cb∗
B , Cb∗

S ) are the stationary points of the expected

profit in each region, CS > CB and CS ≤ CB, while C∗
B is the value that

maximizes the boundary line between these regions, and EPCP (CB, CS) =

−(aB ·C2
B+aS ·C2

S)+EX,Z [ΠCP (CB, CS, x, z)]. These points satisfy the following
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conditions:





(1− F (Ca∗
B ))H(Ca∗

S − Ca∗
B ) =

2aB ·Ca∗
B −πB(1−F (Ca∗

B ))

πS

πS

∫ Ca∗
B

0
H(Ca∗

S − x)f(x)dx = −2aB · Ca∗
B − 2aS · Ca∗

S + πB(1− F (Ca∗
B )) + πS

(4-17a)





F (·) ∩ LB(·) = {Cb∗
B }

Ax(·) ∩ LS(·) = {Cb∗
S }

(4-17b)

C∗
B = arg max

0≤CB

{
− (aB + aS) · C2

B + EX,Z

[
ΠCP (CB, CB, x, z)

]}

(4-17c)

with Lk(C) = 1 − 2ak

πk
· C, k ∈ {B, S}, Ax(C) =

∫ C

0
H(C − x)f(x)dx, and

F (·) and H(·) are, respectively, the cumulative distributions for the market

demands for X and Z.

The centralized system’s expected operational profit-function happens to

be a continuous function defined by parts according to the relation between the

manufacturing units’ capacity-values, CB and CS. So, the globally optimal ca-

pacity decision (C∗
B, C∗

S) is taken among the locally optimal capacity decisions,

according to the Equation (4-16). These locally optimal decisions correspond

to the stationary point in each part of the expected operational-profit defi-

nition, (Ca∗
B , Ca∗

S ) or (Cb∗
B , Cb∗

S ), or the boundary point between the definition

parts, (C∗
B, C∗

B). Arranging the expressions that define the first-order optimal-

ity condition, the stationary points are given, respectively, by the equations

(4-17a) and (4-17b), while the expression that define the first-order optimality

condition to determine the boundary point is given by the equation (4-17c).

The Buyer-Supplier dyad’s performance under central planning, EP ∗
CP ,

is given by the centralized system’s maximum expected profit , that is EP ∗
CP =

EPCP (C∗
B, C∗

S), where (C∗
B, C∗

S) is defined by Equation(4-16).

4.2
Appraisal of the companies’ optimal capacity decisions

It is possible to establish a relation between the companies’ optimal ca-

pacity decisions under a generic contract and the ones under independent plan-

ning. In general, the companies’ optimal capacities under a generic contract are

greater or equal to the ones under independent planning. It is characteristic of
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elimination of double marginalization. In particular, that relation is strict for

the Supplier’s optimal decisions when they are not equal to the upper bound.

There are upper bounds for the capacity decisions under both situations, under

and without of the contract. These results are presented in Proposition 9 and

Proposition 10, respectively, for Buyer and Supplier.

Proposition 9 Buyer’s optimal capacity under the contract situation is greater

than or equal to his capacity decision under independent planning, and these

capacities are upperly bounded by πB

2aB
. Also, the optimal solution for Buyer’s

capacity problem CB|ζ can be expressed by Equation (4-18), where CB is

Buyer’s optimal capacity under independent planning.

CB|ζ =





C1 , if C1 ∈ [0, R)

CB , if CB ∈
(
R, πB

2aB

]

R , if C1 /∈ [0, R) ∧ CB /∈
(
R, πB

2aB

] (4-18)

where C1 and CB satisfy, respectively, −2aB · C1 + (πB + d · pm + t)
[
1 −

F (C1)
]

= 0 and −2aB · CB + πB

[
1− F (CB)

]
= 0.

Proposition 10 Supplier’ optimal capacity under the contract situation is

always larger than her capacity decision under independent planning, unless

these capacities are equal to the bounding value given by πS

2aS
.

Note that the relation between the optimal capacities does not imply that

a given contract is viable for both companies. In fact, Buyer will be better off

under the contract only if the cost of increasing his capacity is less than the

increase of the expected operational profit derived from the increased capacity.

From the Supplier’s point of view, the forced compliance assumption forces her

to increase her capacity, in relation to the one under independent planning, if

her capacity decision under the contract conditions is less than the capacity

commitment level. So, for adhering to the contract conditions, Supplier must

set her capacity at the level committed and, consequently, will be worse off

under the contract.

4.3
The contract problem and optimization procedure

In the previous sections the optimal capacities have been characterized

under a given contract, under independent planning, as well as under central

planning. It is unfortunate that the optimal profit conditions and profits are

not explicit functions of the contract parameters, because this precludes the
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analytical assessment of optimal contracts. Hence most of the analysis must

be made through particular numerical instances.

The contract optimization procedure intends to determine optimal con-

tracts in the continuous parameter space. That is, sets of parameters that

define contracts that maximize the companies’ expected joint profit must be

found by searching a superset of the optimal parameter space. As it was not

possible to get the closed expressions for the partial derivates for the compa-

nies’ expected profits, a derivative free pattern search algorithm will be defined

to find some locally optimal contracts. Obviously, only viable contracts are of

interest. However, the viability constraints involve non-linear functions without

explicit expressions for their partial derivates, which makes it quite complex

to use a constrained search algorithm.

Clearly, ignoring the viability constraints, the contracts that optimize

to the dyad’s expected profit can be unviable for some, or both, companies.

Thus, a practical stance was taken here. The search will be made in a subset

of the continuous parameter space Ω defined by some bounds that exclude

uninteresting contracts. Optimal contracts in this reduced subset will be

searched, starting from different points. The contracts that are viable for both

companies will be retained at each iteration of the optimization search process,

and the best of them will be considered as viable and (local) optimal contract,

which will define the set denote by ΩV OC . To obtain a large variety of optimal

contracts a grid of starting points will be used, which defines a discrete set of

initial contracts that is denoted by Ω◦.

Note that, considering Proposition 10, it does not make sense to con-

sider the capacity commitment level R larger than the Supplier’s maximum

economic capacity. Thus, the continuous parameter space Ω is defined by Set

(4-19), while an upper bound for the penalty parameter will be considered to

define the discrete set of initial contracts Ω◦.

Ω =

{
(R, d, t) : R ∈

[
0,

πS

2aS

]
, d ∈ [0, 1], t ≥ 0

}
(4-19)

Therefore, the contract problem based on the dyad’s expected profit

EPD|ζ (where EPD|ζ = EPB|ζ + EPS|ζ) is defined by Problem (4-20), whose

objective function is given by the sum of the companies’ expected operational

profit minus the sum of the companies’ capacity cost.
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max
ζ∈Ω

{
−

(
aB · C2

B|ζ + aS · C2
S|ζ

)
+ EX

[
ΠB|ζ(CB|ζ , x)

]
+ EY,Z

[
ΠS|ζ(CS|ζ , y, z)

]}

(4-20)

where CB|ζ and CS|ζ are the optimal capacity decisions under the contract ζ,

respectively, for Buyer and Supplier.

The pattern search algorithm used is based on the one developed by

Lewis and Torczon (1999), which is an algorithm defined for bound-constrained

maximization that considers the possibility of unbounded values for the

variables. Specifically, at each iteration, the pattern search algorithm evaluates

and compares the Buyer-Supplier dyad’s expected profit under a trial-move

contract and the current contract of the iteration. The trial contract is the

best selected among the feasible contracts (i.e. within the given boundaries)

obtained by exploratory moves defined in the pattern search. In this work, the

bound-constrained exploratory moves are defined in the direction of the axes

and the principal diagonal of the quadrants defined by the current contract as

origin. The search algorithm is stopped when the gain of the dyad’s expected

profit obtained by the last iteration is less than a given value.
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